Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows.

نویسندگان

  • G R Mamatsashvili
  • D Z Gogichaishvili
  • G D Chagelishvili
  • W Horton
چکیده

We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number) plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of flow shear to Alfvén speed, ky<S/uA (i.e., the Alfvén frequency is lower than the shear rate). We focus on analysis of the character of nonlinear processes and the underlying self-sustaining scheme of the turbulence, i.e., on the interplay between linear transient growth and nonlinear processes, in the spectral plane. Our study, being concerned with a new type of energy-injecting process for turbulence-the transient growth-represents an alternative to the main trends of magnetohydrodynamic (MHD) turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow; see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angular redistribution of nonlinear perturbations: a universal feature of nonuniform flows.

Classically, the net action of nonlinear turbulent processes is interpreted as either a direct or inverse cascade. However, in nonuniform/shear flows the dominant process is a nonlinear redistribution over wave number angle of perturbation spatial Fourier harmonics. We call this process a nonlinear transverse redistribution (NTR). This phenomenon is demonstrated for a simple two-dimensional con...

متن کامل

Development of anisotropy in incompressible magnetohydrodynamic turbulence.

We present a set of three-dimensional direct numerical simulations of incompressible decaying magnetohydrodynamic turbulence in which we investigate the influence of an external uniform magnetic field B0 . A parametric study in terms of B0 intensity is made where, in particular, we distinguish the shear-from the pseudo-Alfvén waves dynamics. The initial kinetic and magnetic energies are equal w...

متن کامل

Local Hydrodynamic Stability of Accretion Disks

We employ a variety of numerical simulations in the local shearing box system to investigate in greater depth the local hydrodynamic stability of Keplerian differential rotation. In particular we explore the relationship of Keplerian shear to the nonlinear instabilities known to exist in simple Cartesian shear. The Coriolis force is the source of linear stabilization in differential rotation. W...

متن کامل

Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows.

The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotati...

متن کامل

A low-dimensional model for turbulent shear flows

We analyse a low-dimensional model for turbulent shear flows. The model is based on Fourier modes and describes sinusoidal shear flow, in which the fluid between two free-slip walls experiences a sinusoidal body force. The model contains a total of nine modes, including modes describing the basic mean velocity profile and its modification, downstream vortices, streaks, and instabilities of stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2014